CVE-2021-29521

Source
https://nvd.nist.gov/vuln/detail/CVE-2021-29521
Import Source
https://storage.googleapis.com/cve-osv-conversion/osv-output/CVE-2021-29521.json
JSON Data
https://api.osv.dev/v1/vulns/CVE-2021-29521
Aliases
Published
2021-05-14T20:15:11Z
Modified
2024-05-30T03:15:10.739735Z
Severity
  • 5.5 (Medium) CVSS_V3 - CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H CVSS Calculator
Summary
[none]
Details

TensorFlow is an end-to-end open source platform for machine learning. Specifying a negative dense shape in tf.raw_ops.SparseCountSparseOutput results in a segmentation fault being thrown out from the standard library as std::vector invariants are broken. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/8f7b60ee8c0206a2c99802e3a4d1bb55d2bc0624/tensorflow/core/kernels/countops.cc#L199-L213) assumes the first element of the dense shape is always positive and uses it to initialize a BatchedMap<T> (i.e., std::vector&lt;absl::flat_hash_map<int64,T>>(https://github.com/tensorflow/tensorflow/blob/8f7b60ee8c0206a2c99802e3a4d1bb55d2bc0624/tensorflow/core/kernels/countops.cc#L27)) data structure. If the shape tensor has more than one element, num_batches is the first value in shape. Ensuring that the dense_shape argument is a valid tensor shape (that is, all elements are non-negative) solves this issue. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2 and TensorFlow 2.3.3.

References

Affected packages

Git / github.com/tensorflow/tensorflow

Affected ranges

Type
GIT
Repo
https://github.com/tensorflow/tensorflow
Events
Introduced
0 Unknown introduced commit / All previous commits are affected
Fixed

Affected versions

0.*

0.12.0-rc0
0.12.0-rc1
0.12.1
0.5.0
0.6.0

v0.*

v0.10.0
v0.10.0rc0
v0.11.0
v0.11.0rc0
v0.11.0rc1
v0.11.0rc2
v0.12.0
v0.7.0
v0.7.1
v0.8.0rc0
v0.9.0
v0.9.0rc0

v1.*

v1.0.0
v1.0.0-alpha
v1.0.0-rc0
v1.0.0-rc1
v1.0.0-rc2
v1.1.0
v1.1.0-rc0
v1.1.0-rc1
v1.1.0-rc2
v1.12.0
v1.12.0-rc0
v1.12.0-rc1
v1.12.0-rc2
v1.12.1
v1.2.0
v1.2.0-rc0
v1.2.0-rc1
v1.2.0-rc2
v1.3.0-rc0
v1.3.0-rc1
v1.5.0
v1.5.0-rc0
v1.5.0-rc1
v1.6.0
v1.6.0-rc0
v1.6.0-rc1
v1.7.0
v1.7.0-rc0
v1.7.0-rc1
v1.8.0
v1.8.0-rc0
v1.8.0-rc1
v1.9.0
v1.9.0-rc0
v1.9.0-rc1
v1.9.0-rc2