GHSA-7r94-xv9v-63jw

Suggest an improvement
Source
https://github.com/advisories/GHSA-7r94-xv9v-63jw
Import Source
https://github.com/github/advisory-database/blob/main/advisories/github-reviewed/2021/11/GHSA-7r94-xv9v-63jw/GHSA-7r94-xv9v-63jw.json
JSON Data
https://api.osv.dev/v1/vulns/GHSA-7r94-xv9v-63jw
Aliases
Published
2021-11-10T18:44:11Z
Modified
2024-11-13T22:25:01.034445Z
Severity
  • 5.5 (Medium) CVSS_V3 - CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H CVSS Calculator
  • 6.8 (Medium) CVSS_V4 - CVSS:4.0/AV:L/AC:L/AT:N/PR:L/UI:N/VC:N/VI:N/VA:H/SC:N/SI:N/SA:N CVSS Calculator
Summary
A use of uninitialized value vulnerability in Tensorflow
Details

Impact

TensorFlow's Grappler optimizer has a use of unitialized variable:

  const NodeDef* dequeue_node;
  for (const auto& train_node : train_nodes) {
    if (IsDequeueOp(*train_node)) {
      dequeue_node = train_node;
      break;
    }
  }

  if (dequeue_node) {
    ...
  }

If the train_nodes vector (obtained from the saved model that gets optimized) does not contain a Dequeue node, then dequeue_node is left unitialized.

Patches

We have patched the issue in GitHub commit 68867bf01239d9e1048f98cbad185bf4761bedd3.

The fix will be included in TensorFlow 2.7.0. We will also cherrypick this commit on TensorFlow 2.6.1, TensorFlow 2.5.2, and TensorFlow 2.4.4, as these are also affected and still in supported range.

For more information

Please consult our security guide for more information regarding the security model and how to contact us with issues and questions.

Attribution

This vulnerability has been reported by Qian Feng from Baidu Security Team.

Database specific
{
    "nvd_published_at": "2021-11-05T23:15:00Z",
    "cwe_ids": [
        "CWE-908"
    ],
    "severity": "MODERATE",
    "github_reviewed": true,
    "github_reviewed_at": "2021-11-08T21:53:17Z"
}
References

Affected packages

PyPI / tensorflow

Package

Affected ranges

Type
ECOSYSTEM
Events
Introduced
2.6.0
Fixed
2.6.1

Affected versions

2.*

2.6.0

PyPI / tensorflow

Package

Affected ranges

Type
ECOSYSTEM
Events
Introduced
2.5.0
Fixed
2.5.2

Affected versions

2.*

2.5.0
2.5.1

PyPI / tensorflow

Package

Affected ranges

Type
ECOSYSTEM
Events
Introduced
0Unknown introduced version / All previous versions are affected
Fixed
2.4.4

Affected versions

0.*

0.12.0
0.12.1

1.*

1.0.0
1.0.1
1.1.0
1.2.0
1.2.1
1.3.0
1.4.0
1.4.1
1.5.0
1.5.1
1.6.0
1.7.0
1.7.1
1.8.0
1.9.0
1.10.0
1.10.1
1.11.0
1.12.0
1.12.2
1.12.3
1.13.1
1.13.2
1.14.0
1.15.0
1.15.2
1.15.3
1.15.4
1.15.5

2.*

2.0.0
2.0.1
2.0.2
2.0.3
2.0.4
2.1.0
2.1.1
2.1.2
2.1.3
2.1.4
2.2.0
2.2.1
2.2.2
2.2.3
2.3.0
2.3.1
2.3.2
2.3.3
2.3.4
2.4.0
2.4.1
2.4.2
2.4.3

PyPI / tensorflow-cpu

Package

Affected ranges

Type
ECOSYSTEM
Events
Introduced
2.6.0
Fixed
2.6.1

Affected versions

2.*

2.6.0

PyPI / tensorflow-cpu

Package

Affected ranges

Type
ECOSYSTEM
Events
Introduced
2.5.0
Fixed
2.5.2

Affected versions

2.*

2.5.0
2.5.1

PyPI / tensorflow-cpu

Package

Affected ranges

Type
ECOSYSTEM
Events
Introduced
0Unknown introduced version / All previous versions are affected
Fixed
2.4.4

Affected versions

1.*

1.15.0

2.*

2.1.0
2.1.1
2.1.2
2.1.3
2.1.4
2.2.0
2.2.1
2.2.2
2.2.3
2.3.0
2.3.1
2.3.2
2.3.3
2.3.4
2.4.0
2.4.1
2.4.2
2.4.3

PyPI / tensorflow-gpu

Package

Affected ranges

Type
ECOSYSTEM
Events
Introduced
2.6.0
Fixed
2.6.1

Affected versions

2.*

2.6.0

PyPI / tensorflow-gpu

Package

Affected ranges

Type
ECOSYSTEM
Events
Introduced
2.5.0
Fixed
2.5.2

Affected versions

2.*

2.5.0
2.5.1

PyPI / tensorflow-gpu

Package

Affected ranges

Type
ECOSYSTEM
Events
Introduced
0Unknown introduced version / All previous versions are affected
Fixed
2.4.4

Affected versions

0.*

0.12.0
0.12.1

1.*

1.0.0
1.0.1
1.1.0
1.2.0
1.2.1
1.3.0
1.4.0
1.4.1
1.5.0
1.5.1
1.6.0
1.7.0
1.7.1
1.8.0
1.9.0
1.10.0
1.10.1
1.11.0
1.12.0
1.12.2
1.12.3
1.13.1
1.13.2
1.14.0
1.15.0
1.15.2
1.15.3
1.15.4
1.15.5

2.*

2.0.0
2.0.1
2.0.2
2.0.3
2.0.4
2.1.0
2.1.1
2.1.2
2.1.3
2.1.4
2.2.0
2.2.1
2.2.2
2.2.3
2.3.0
2.3.1
2.3.2
2.3.3
2.3.4
2.4.0
2.4.1
2.4.2
2.4.3