GHSA-9697-98pf-4rw7

Suggest an improvement
Source
https://github.com/advisories/GHSA-9697-98pf-4rw7
Import Source
https://github.com/github/advisory-database/blob/main/advisories/github-reviewed/2021/08/GHSA-9697-98pf-4rw7/GHSA-9697-98pf-4rw7.json
JSON Data
https://api.osv.dev/v1/vulns/GHSA-9697-98pf-4rw7
Aliases
Related
Published
2021-08-25T14:41:44Z
Modified
2024-11-13T21:24:45.266316Z
Severity
  • 5.5 (Medium) CVSS_V3 - CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:N/A:N CVSS Calculator
  • 6.8 (Medium) CVSS_V4 - CVSS:4.0/AV:L/AC:L/AT:N/PR:L/UI:N/VC:H/VI:N/VA:N/SC:N/SI:N/SA:N CVSS Calculator
Summary
Heap OOB in `UpperBound` and `LowerBound`
Details

Impact

An attacker can read from outside of bounds of heap allocated data by sending specially crafted illegal arguments to tf.raw_ops.UpperBound:

import tensorflow as tf

tf.raw_ops.UpperBound(
  sorted_input=[1,2,3],
  values=tf.constant(value=[[0,0,0],[1,1,1],[2,2,2]],dtype=tf.int64),
  out_type=tf.int64)

The implementation does not validate the rank of sorted_input argument:

  void Compute(OpKernelContext* ctx) override {
    const Tensor& sorted_inputs_t = ctx->input(0);
    // ...
    OP_REQUIRES(ctx, sorted_inputs_t.dim_size(0) == values_t.dim_size(0),
                Status(error::INVALID_ARGUMENT,
                       "Leading dim_size of both tensors must match."));
    // ...
    if (output_t->dtype() == DT_INT32) {
      OP_REQUIRES(ctx,
                  FastBoundsCheck(sorted_inputs_t.dim_size(1), ...));
      // ...
    }

As we access the first two dimensions of sorted_inputs_t tensor, it must have rank at least 2.

A similar issue occurs in tf.raw_ops.LowerBound.

Patches

We have patched the issue in GitHub commit 42459e4273c2e47a3232cc16c4f4fff3b3a35c38.

The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.

For more information

Please consult our security guide for more information regarding the security model and how to contact us with issues and questions.

Attribution

This vulnerability has been reported by members of the Aivul Team from Qihoo 360.

Database specific
{
    "nvd_published_at": "2021-08-12T23:15:00Z",
    "cwe_ids": [
        "CWE-125"
    ],
    "severity": "MODERATE",
    "github_reviewed": true,
    "github_reviewed_at": "2021-08-24T14:24:19Z"
}
References

Affected packages

PyPI / tensorflow

Package

Affected ranges

Type
ECOSYSTEM
Events
Introduced
0Unknown introduced version / All previous versions are affected
Fixed
2.3.4

Affected versions

0.*

0.12.0
0.12.1

1.*

1.0.0
1.0.1
1.1.0
1.2.0
1.2.1
1.3.0
1.4.0
1.4.1
1.5.0
1.5.1
1.6.0
1.7.0
1.7.1
1.8.0
1.9.0
1.10.0
1.10.1
1.11.0
1.12.0
1.12.2
1.12.3
1.13.1
1.13.2
1.14.0
1.15.0
1.15.2
1.15.3
1.15.4
1.15.5

2.*

2.0.0
2.0.1
2.0.2
2.0.3
2.0.4
2.1.0
2.1.1
2.1.2
2.1.3
2.1.4
2.2.0
2.2.1
2.2.2
2.2.3
2.3.0
2.3.1
2.3.2
2.3.3

PyPI / tensorflow

Package

Affected ranges

Type
ECOSYSTEM
Events
Introduced
2.4.0
Fixed
2.4.3

Affected versions

2.*

2.4.0
2.4.1
2.4.2

PyPI / tensorflow

Package

Affected ranges

Type
ECOSYSTEM
Events
Introduced
2.5.0
Fixed
2.5.1

Affected versions

2.*

2.5.0

PyPI / tensorflow-cpu

Package

Affected ranges

Type
ECOSYSTEM
Events
Introduced
0Unknown introduced version / All previous versions are affected
Fixed
2.3.4

Affected versions

1.*

1.15.0

2.*

2.1.0
2.1.1
2.1.2
2.1.3
2.1.4
2.2.0
2.2.1
2.2.2
2.2.3
2.3.0
2.3.1
2.3.2
2.3.3

PyPI / tensorflow-cpu

Package

Affected ranges

Type
ECOSYSTEM
Events
Introduced
2.4.0
Fixed
2.4.3

Affected versions

2.*

2.4.0
2.4.1
2.4.2

PyPI / tensorflow-cpu

Package

Affected ranges

Type
ECOSYSTEM
Events
Introduced
2.5.0
Fixed
2.5.1

Affected versions

2.*

2.5.0

PyPI / tensorflow-gpu

Package

Affected ranges

Type
ECOSYSTEM
Events
Introduced
0Unknown introduced version / All previous versions are affected
Fixed
2.3.4

Affected versions

0.*

0.12.0
0.12.1

1.*

1.0.0
1.0.1
1.1.0
1.2.0
1.2.1
1.3.0
1.4.0
1.4.1
1.5.0
1.5.1
1.6.0
1.7.0
1.7.1
1.8.0
1.9.0
1.10.0
1.10.1
1.11.0
1.12.0
1.12.2
1.12.3
1.13.1
1.13.2
1.14.0
1.15.0
1.15.2
1.15.3
1.15.4
1.15.5

2.*

2.0.0
2.0.1
2.0.2
2.0.3
2.0.4
2.1.0
2.1.1
2.1.2
2.1.3
2.1.4
2.2.0
2.2.1
2.2.2
2.2.3
2.3.0
2.3.1
2.3.2
2.3.3

PyPI / tensorflow-gpu

Package

Affected ranges

Type
ECOSYSTEM
Events
Introduced
2.4.0
Fixed
2.4.3

Affected versions

2.*

2.4.0
2.4.1
2.4.2

PyPI / tensorflow-gpu

Package

Affected ranges

Type
ECOSYSTEM
Events
Introduced
2.5.0
Fixed
2.5.1

Affected versions

2.*

2.5.0