GHSA-vfp6-jrw2-99g9

Source
https://github.com/advisories/GHSA-vfp6-jrw2-99g9
Import Source
https://github.com/github/advisory-database/blob/main/advisories/github-reviewed/2023/11/GHSA-vfp6-jrw2-99g9/GHSA-vfp6-jrw2-99g9.json
Aliases
Published
2023-11-08T15:02:51Z
Modified
2023-11-15T08:58:26.658871Z
Details

Summary

Cosign is susceptible to a denial of service by an attacker controlled registry. An attacker who controls a remote registry can return a high number of attestations and/or signatures to Cosign and cause Cosign to enter a long loop resulting in an endless data attack. The root cause is that Cosign loops through all attestations fetched from the remote registry in pkg/cosign.FetchAttestations.

The attacker needs to compromise the registry or make a request to a registry they control. When doing so, the attacker must return a high number of attestations in the response to Cosign. The result will be that the attacker can cause Cosign to go into a long or infinite loop that will prevent other users from verifying their data. In Kyvernos case, an attacker whose privileges are limited to making requests to the cluster can make a request with an image reference to their own registry, trigger the infinite loop and deny other users from completing their admission requests. Alternatively, the attacker can obtain control of the registry used by an organization and return a high number of attestations instead the expected number of attestations.

The vulnerable loop in Cosign starts on line 154 below: https://github.com/sigstore/cosign/blob/004443228442850fb28f248fd59765afad99b6df/pkg/cosign/fetch.go#L135-L196

The l slice is controllable by an attacker who controls the remote registry.

Many cloud-native projects consider the remote registry to be untrusted, including Crossplane, Notary and Kyverno. We consider the same to be the case for Cosign, since users are not in control of whether the registry returns the expected data.

TUF's security model labels this type of vulnerability an "Endless data attack", but an attacker could use this as a type of rollback attack, in case the user attempts to deploy a patched version of a vulnerable image; The attacker could prevent this upgrade by causing Cosign to get stuck in an infinite loop and never complete.

Mitigation

The issue can be mitigated rather simply by setting a limit to the limit of attestations that Cosign will loop through. The limit does not need to be high to be within the vast majority of use cases and still prevent the endless data attack.

References

Affected packages

Go / github.com/sigstore/cosign

Affected ranges

Type
SEMVER
Events
Introduced
0The exact introduced commit is unknown
Fixed
1.13.2

Database specific

{
    "last_known_affected_version_range": "<= 1.13.1"
}

Go / github.com/sigstore/cosign/v2

Affected ranges

Type
SEMVER
Events
Introduced
0The exact introduced commit is unknown
Fixed
2.2.1