PYSEC-2025-43

See a problem?
Import Source
https://github.com/pypa/advisory-database/blob/main/vulns/vllm/PYSEC-2025-43.yaml
JSON Data
https://api.osv.dev/v1/vulns/PYSEC-2025-43
Aliases
Published
2025-05-29T17:15:21Z
Modified
2025-05-29T19:42:13.122057Z
Summary
[none]
Details

vLLM is an inference and serving engine for large language models (LLMs). In versions starting from 0.7.0 to before 0.9.0, in the file vllm/multimodal/hasher.py, the MultiModalHasher class has a security and data integrity issue in its image hashing method. Currently, it serializes PIL.Image.Image objects using only obj.tobytes(), which returns only the raw pixel data, without including metadata such as the image’s shape (width, height, mode). As a result, two images of different sizes (e.g., 30x100 and 100x30) with the same pixel byte sequence could generate the same hash value. This may lead to hash collisions, incorrect cache hits, and even data leakage or security risks. This issue has been patched in version 0.9.0.

References

Affected packages

PyPI / vllm

Package

Affected ranges

Type
GIT
Repo
https://github.com/vllm-project/vllm
Events
Introduced
0 Unknown introduced commit / All previous commits are affected
Fixed
Type
ECOSYSTEM
Events
Introduced
0Unknown introduced version / All previous versions are affected
Fixed
0.9.0

Affected versions

0.*

0.0.1
0.1.0
0.1.1
0.1.2
0.1.3
0.1.4
0.1.5
0.1.6
0.1.7
0.2.0
0.2.1
0.2.1.post1
0.2.2
0.2.3
0.2.4
0.2.5
0.2.6
0.2.7
0.3.0
0.3.1
0.3.2
0.3.3
0.4.0
0.4.0.post1
0.4.1
0.4.2
0.4.3
0.5.0
0.5.0.post1
0.5.1
0.5.2
0.5.3
0.5.3.post1
0.5.4
0.5.5
0.6.0
0.6.1
0.6.1.post1
0.6.1.post2
0.6.2
0.6.3
0.6.3.post1
0.6.4
0.6.4.post1
0.6.5
0.6.6
0.6.6.post1
0.7.0
0.7.1
0.7.2
0.7.3
0.8.0
0.8.1
0.8.2
0.8.3
0.8.4
0.8.5
0.8.5.post1